Chambersburg Area School District
Transportation Review

Visitation Conducted
July 23, 2015

Pennsylvania Association of School Business Officials
P. O. Box 6993
Harrisburg, PA 17112-0993
(717) 540-9551
Fax (717) 540-1796
www.pasbo.org
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>4</td>
</tr>
<tr>
<td>OBJECTIVES AND METHODOLOGY</td>
<td>5</td>
</tr>
<tr>
<td>SECTION A: BENCHMARKING DATA</td>
<td>7</td>
</tr>
<tr>
<td>SECTION B: STATE SUBSIDY</td>
<td>14</td>
</tr>
<tr>
<td>SECTION C: CONTRACT REVIEW</td>
<td>28</td>
</tr>
<tr>
<td>SECTION D: SPECIAL EDUCATION TRANSPORTATION</td>
<td>32</td>
</tr>
<tr>
<td>SECTION E: OPPORTUNITIES FOR IMPROVEMENT</td>
<td>37</td>
</tr>
<tr>
<td>APPENDIX A – SAMPLE OF HAZARDOUS ROUTES DOCUMENTATION</td>
<td></td>
</tr>
<tr>
<td>APPENDIX B – SAMPLE MILEAGE FORM TEMPLATE</td>
<td></td>
</tr>
<tr>
<td>APPENDIX C – SAMPLE SPECIAL EDUCATION TRANSPORTATION REQUEST FORM</td>
<td></td>
</tr>
<tr>
<td>APPENDIX D – SAMPLE PRIVATE SCHOOL TRANSPORTATION REQUEST FORM</td>
<td></td>
</tr>
<tr>
<td>APPENDIX E – SAMPLE ELECTRONIC BUS PASS</td>
<td></td>
</tr>
<tr>
<td>APPENDIX F – EXAMPLE OF STATE REIMBURSEMENT CALCULATIONS</td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION

Under the direction of the Pennsylvania Association of School Business Officials (PASBO), a team of two School Business Officials, recognized as experts in the field of school district business operations, was assembled to conduct a transportation review for the Chambersburg Area School District. This review was at the request of the School District.

Jeff Ammerman, MBA, PRSBA

The PASBO Study Team (Study Team) was assembled through the efforts of Jeff Ammerman, PRSBA, Director of Technical Assistance for PASBO. Prior to his current position with PASBO, Mr. Ammerman was the Business Manager at State College Area School District where he also served in a dual role as Director of Human Resources.

Jeff Ammerman graduated with a BS in Economics in 1988 from Penn State University and an MBA from Penn State University in 2004. Mr. Ammerman also worked as Business Manager at Philipsburg-Osceola Area School District and South Middleton School District. He was a PASBO regional chapter president in 2004 and prior to that Mr. Ammerman served as a Vice President of a regional chapter in the preceding two years.

Wayne McCullough, DBA, PRSBA

Wayne McCullough is the Chief Financial & Operations Officer at the Southern York County School District. He is considered one of the true experts in the field of student transportation. Dr. McCullough is the co-author of PASBO’s “Elements of Transportation,” which is a core curriculum of instruction that provides a knowledge-base for school business officials working in the field of school transportation.

Dr. McCullough received PASBO’s 2003 Award of Achievement in recognition of the outstanding practice: “Guidance Document for Planning, Design, and Construction of Major Projects Using the Design Team Concept.” In 2013, Dr. McCullough received PASBO’s Gary Reeser Award as the outstanding school business official of the year.

Dr. McCullough has published numerous articles related to school business leadership. In addition, Dr. McCullough has served as President and a Director on PASBO’s Board, Chair of the Facilities Committee, and Chair of the Materials Management (Purchasing) Committee.

Dr. McCullough serves as an adjunct professor for Wilkes University’s Master of Business Leadership program, teaching courses related to student transportation, facilities management, purchasing, and technology integration.

Dr. McCullough served as the Chair of the Study Team.
BACKGROUND

The Chambersburg Area School District is located in Franklin County Pennsylvania and serves over 250 square miles. Over 61,000 people live in the Chambersburg Area School District, which is made up of the borough of Chambersburg, Greene, Hamilton, Letterkenny and Lurgan Townships, as well as the majority of Guilford Township.

Chambersburg Area School District provides transportation services for public and private school students in grades kindergarten through 12.

In the 2013-2014 school year, CASD transported a total of 10,212 using both district-owned and contracted vehicles at a total cost of $5,932,318. The transported students included the following categories: (a) public non-hazardous: 8,188, (b) public hazardous: 1,188, (c) nonpublic: 836, and (d) 1,058 non-reimbursable students.

The state provides partial reimbursement (subsidy) of a school district’s cost of transporting elementary students who reside one and one-half miles or more from the school in which they are enrolled and secondary students who reside two miles or more from the school in which they are enrolled. In addition, subsidy is paid for students residing within those distances if they would have to walk along a route certified by PennDOT to be hazardous because of road or traffic conditions. The School District was subsidized $2,638,969 for 2013-2014, which was paid during the 2014-2015 school year.
OBJECTIVES AND METHODOLOGY

Qualified consultants and team members under the direction of the Pennsylvania Association of School Business Officials conducted a study of the transportation operations of the School District as described below:

I. SCOPE OF WORK

 A. Coordinate with District officials prior to starting this project to define the project goals and objectives.

 B. Analysis and review of district transportation reports to identify the vehicles loaded as near capacity as possible, mileage with pupils exceeds mileage without pupils wherever possible, and aging vehicles for replacement.

 C. Review current bus fleet as it relates to age of fleet and planned replacement cycle.

 D. Provide for in-depth interviews with transportation personnel and others as deemed appropriate.

 E. Provide a comprehensive on-site review of the transportation operations.

 a. Analyze the routing of vehicles and schedules for arrivals and departures from school buildings.

 b. Validate the route mileage and record-keeping practices of the transportation department.

 c. Analyze the efficiency and utilization of the current transportation routing software.

 d. Check the transportation policy to ensure transportation practices comply with district policy, and identify policy language that supports or detracts from implementing cost efficiencies in the transportation operation.

 e. Review the major routes of non-reimbursable pupils, and determine if the district should apply for hazardous routing identification for these routes.

 f. Identify high net cost transportation practices for cost/benefit consideration by the district.

 g. Review computerization of non-routing operations.

 h. Review State reimbursement calculations and suggest methods for increasing State reimbursement.
F. Review the cost differentials between owned versus contracted service

G. Provide an exit conference prior to leaving the district.

H. Prepare a comprehensive report with recommendations to obtain transportation cost efficiencies.

I. Upon completion of the review, a draft of the report will be delivered and reviewed with the Superintendent, Director of Business Operations, and other administrators as directed.

J. Fifteen (15) copies of the approved final report will be provided.

II. The following is the list of individuals who were interviewed by the Study Team during the visitation:

A. Dr. Joseph Padasak, Superintendent
B. Tammy Stouffer, Director of Support Services
C. LaDanna Naugle, Transportation Supervisor
D. Bobbie Stine, Assistant Supervisor of Transportation

III. The list of documents viewed by the PASBO Study Team during the visitation is as follows:

A. CASD Transportation Policy 810 and 810.1
B. Summary of Pupil Transportation Subsidy, Payable Year 2011-2012 for School Year 2010-2011
C. Summary of Pupil Transportation Subsidy, Payable Year 2012-2013 for School Year 2011-2012
D. Summary of Pupil Transportation Subsidy, Payable Year 2013-2014 for School Year 2012-2013
E. Summary of Pupil Transportation Subsidy, Payable Year 2014-2015 for School Year 2013-2014
F. Contracts for the Transportation of School Pupils 2015-2018
G. Pupil Transportation Data Worksheet for 2014-2015
H. PDE 1049 End of Year Pupil Transport School Year Ending June 30, 2014
I. CASD Annual Financial Reports
J. Arrivals and Dismissals Data
K. List of students excluded from non-reimbursable 2014-2015
L. List of students that live within walk distance but ride anyway
M. 2015-2016 Transportation Budget
N. 2014-2015 Transportation Budget and Expenditure Report
O. 2015 Bus Purchase Orders
P. Transportation related job descriptions
Q. Fuel purchase orders
R. Orbit Software attendance zones information
S. CASD Bus Driver Agreement
A. BENCHMARKING DATA

Cost per student

The following graph summarizes the District average cost per student transported for school years 2010-2011, 2011-2012, 2012-2013, and 2013-2014. The student counts used for this calculation consist of all students transported, including total public and non-public students.

The data is based on information obtained from the following documents: (a) Summary of Pupil Transportation Subsidy, Payable Year 2014-2015 for School Year 2013-2014, (b) Summary of Pupil Transportation Subsidy, Payable Year 2013-2014 for School Year 2012-2013, (c) Summary of Pupil Transportation Subsidy, Payable Year 2012-2013 for School Year 2011-2012, (d) Summary of Pupil Transportation Subsidy, Payable Year 2011-2012 for School Year 2010-2011.

School Year 2010-2011
Number of Students Transported: 9,480
 Public Non Hazardous: 7,873
 Public Hazardous: 710
 Nonpublic: 897
Total Cost for Student Transportation: $5,657,106
Pupil Transportation Subsidy (Public, Nonpublic and Charter): $2,449,667.57
Cost per Student: $596.74
Subsidy per Student: $258.40

School Year 2011-2012
Number of Students Transported: 9,039
 Public Non Hazardous: 7,529
 Public Hazardous: 716
 Nonpublic: 794
Total Cost for Student Transportation: $5,629,899
Pupil Transportation Subsidy (Public, Nonpublic and Charter): $2,420,249.69
Cost per Student: $622.84
Subsidy per Student: $267.75

School Year 2012-2013
Number of Students Transported: 9,240
 Public Non Hazardous: 7,377
 Public Hazardous: 1,097
 Nonpublic: 766
Total Cost for Student Transportation: $5,792,551
Pupil Transportation Subsidy (Public, Nonpublic and Charter): $2,699,320.68
Cost per Student: $626.89
Subsidy per Student: $292.13
School Year 2013-2014
Number of Students Transported: 10,212
 Public Non Hazardous: 8,188
 Public Hazardous: 1,188
 Nonpublic: 836
Total Cost for Student Transportation: $5,932,318
Pupil Transportation Subsidy (Public, Nonpublic and Charter): $2,638,969.38
Cost per Student: $580.91
Subsidy per Student: $258.41
Vehicles per 100 Students

Transportation efficiency is built on two basic principles: (1) maximizing the use of available seating capacity and (2) maximizing the number of times an individual bus is used during the day. The number of vehicles per 100 students data attempts to aggregate these two requirements to establish an understanding of overall routing efficiency and effectiveness. When interpreting a vehicles per 100 student value it is key to recognize that a *lower* value indicates more efficiency.

The data is based on the following information:

School Year 2013-2014
Number of Students Transported: 10,212
Total Number of Vehicles: 163

Chambersburg Area School District: 13
12 with seating capacity of 72
1 with seating capacity of 48

Bricker Transportation: 36
1 with seating capacity of 78
1 with seating capacity of 77
16 with seating capacity of 72
1 with seating capacity of 39
2 with seating capacity of 36
1 with seating capacity of 35
4 with seating capacity of 30
1 with seating capacity of 29
1 with seating capacity of 27
1 with seating capacity of 25
3 with seating capacity of 18
1 with seating capacity of 11
1 with seating capacity of 10
1 with seating capacity of 9
1 with seating capacity of 4

Meyers Bus Lines: 22
10 with seating capacity of 72
2 with seating capacity of 48
1 with seating capacity of 42
1 with seating capacity of 21
5 with seating capacity of 20
1 with seating capacity of 10
2 with seating capacity of 9

Jean Mackey: 6
2 with seating capacity of 72
1 with seating capacity of 48
2 with seating capacity of 10
1 with seating capacity of 7

Cumberland Valley Christian: 7
4 with seating capacity of 73
2 with seating capacity of 72
1 with seating capacity of 48

Shalom Christian Academy: 6
2 with seating capacity of 72
2 with seating capacity of 66
1 with seating capacity of 64
1 with seating capacity of 33

Manito: 7
7 with seating capacity of 10

Jacob Transportaiont: 4
4 with seating capacity of 6

BOYO Transportation: 3
1 with seating capacity of 10
1 with seating capacity of 9
<table>
<thead>
<tr>
<th>Company</th>
<th>Buses</th>
<th>Seats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert E. Friese Bus Transportation</td>
<td>11</td>
<td>360</td>
</tr>
<tr>
<td>Tom Gift III LLC</td>
<td>17</td>
<td>153</td>
</tr>
<tr>
<td>Heck-Meyers LLC</td>
<td>18</td>
<td>136</td>
</tr>
<tr>
<td>RY-AN Meyers LLC</td>
<td>10</td>
<td>68</td>
</tr>
<tr>
<td>Yellow Breeches</td>
<td>3</td>
<td>21</td>
</tr>
</tbody>
</table>
Fleet Age

It is generally accepted that the age of the buses has a significant impact on maintenance demands, safety, and reliability of the fleet. In addition, maximum state reimbursement is realized by maintaining the fleet average at approximately 5 years.

Chambersburg Area School District: 9.8 years
Bricker Transportation: 10.1 years
Meyers Bus Lines: 5.8 years
Jean Mackey: 6.8 years
Cumberland Valley Christian: 13.4 years
Shalom Christian Academy: 13.8 years
Manito: 9.0 years
Jacoby Transportation: 13.3 years
BOYO Transportation: 6.0 years
Robert Friese: 7.8 years
Tom Gift III: 7.5 years
Heck-Meyers: 7.4 years
Ry-An Meyers: 7.5 years
Miles with Students and Miles without Students

A significant part of the state’s reimbursement formula is to reimburse school districts for each bus. The state only reimburses for the miles without students equal to the miles with students, per bus. Based on data from School Year Ending June Ending June 20, 2014 – Subsidy Payable 2014-2015 the district does an excellent job routing buses to ensure maximum subsidy is achieved.
B. STATE SUBSIDY

The Public School Code authorizes partial reimbursement of a school district’s cost of transporting elementary students who reside one and one-half miles or more from the school in which they are enrolled and secondary students who reside two miles or more from the school in which they are enrolled. In addition, subsidy is paid for students residing within those distances if they would have to walk along a route certified as hazardous by PennDOT because of road or traffic conditions (Note: Hazardous Routes & Reporting is also covered below). The basic transportation formula includes the cost of transporting public and non-public school students. The appropriation recognizes differences in geography, population density, wealth, and other factors between school districts. The funding also extends to intermediate units and vocational-technical school transportation.

In addition to the basic transportation funding described above, the State provides supplemental funding for transportation of non-public students. This funding is in recognition of the extra financial burden imposed by Section 1361 of the Public School Code requiring transportation of resident students to non-public schools within ten miles of a district’s borders.

A 2011 Transportation Survey conducted by PASBO showed that district owned transportation operations received an average of 23% transportation subsidy while school districts that
contracted transportation operations received an average of 44% subsidy. A major reason for this difference is because the State funding formula has a bias towards contracted operations.

The following is a chart showing the percentage of subsidy received compared to the total expended for transportation to and from school by CASD:

Payable 2011-2012 for School Year 2010-2011: 43%
 Pupil transportation subsidy, including non-public: $2,449,667
 Total expended for transportation: $5,657,106
 Market value aid ratio: 0.4113

Payable 2012-2013 for School Year 2011-2012: 42%
 Pupil transportation subsidy, including non-public: $2,420,249
 Total expended for transportation: $5,629,899
 Market value aid ratio: 0.4113

Payable 2013-2014 for School Year 2012-2013: 46%
 Pupil transportation subsidy, including non-public: $2,699,320
 Total expended for transportation: $5,792,551
 Market value aid ratio: 0.4197

Payable 2014-2015 for School Year 2013-2014: 44%
 Pupil transportation subsidy, including non-public: $2,638,969
 Total expended for transportation: $5,932,318
 Market value aid ratio: 0.4467

Note: The percentage of reimbursement was higher in school year 2012-2013 primarily because the number of non-reimbursable pupils reported were significantly higher than for school year 2013-2014. Otherwise the amount reimbursed is similar to the market value aid ratio, which indicates the School District is doing a very good job maximizing reimbursement.

STATE SUBSIDY RECORD KEEPING AND AUDIT PREPARATION

The Bureau of School Audits is an agency of the Pennsylvania Auditor General’s department, an agency independent of PDE, but required to report its findings for disposition. Schools must be audited annually, but often two or three years are audited at one time and sometimes several years after actual operations.

Preparing for the auditor begins during the year of operation and with the proper maintenance and assembly of records, a transportation audit should be routine. Remember, the auditor is going from the report back to the documentation and said documents should be organized to support every number on the report. These numbers are difficult to reconstruct after the fact, and should be collected and filed accordingly. Records should be maintained for at least six years, or until they are audited, whichever is later.

Record keeping and preparing for the State auditor is covered in depth below.

Essential Terms

Administrative unit – A school district, intermediate unit or area vocational technical school.
Age of a vehicle – The remainder determined by subtracting the year of manufacture of the chassis from the calendar year in which the school term of usage ends. For example, if the chassis of a bus was manufactured in 2002, the bus is considered to be seven years old in the 2008-09 fiscal for the purposes of the subsidy calculation. (2009 minus 2002 equals 7)

Approved daily mileage – The mileage a vehicle travels daily in transporting pupils to and from school, as approved by PDE. The number of miles approved without passengers cannot exceed the number of miles with passengers. For example if a bus travels 25 miles with students, but 30 miles without, the approved daily mileage would be 50, not 55.

Approved annual mileage – The product of the approved daily mileage times the number of days in the school term for which transportation to and from school was provided by a designated vehicle. For example, if the school term was 180 days and the approved daily mileage was 50, the approved annual mileage would be 50 times 180, or 9000 miles.

Approved Reimbursable Cost (ARC) – The maximum amount an LEA can consider as being subject to the pupil transportation subsidy calculation. ARC is a function of the age and size of the vehicle, the mileage traveled with and without students, and the number of pupils assigned to the vehicle. Allowances are increased each year by a transportation cost index established by PDE using the percentage change in the December to December Consumer Price Index (CPI-U).

Excess cost – Portions of the transportation subsidy that ensures no district expends more than one-half mill of market value in support of the approved cost of pupil transportation.

Fractional Adjustments – One or more of four fractional adjustments that may be applicable to an individual vehicle’s service statistics. The four adjustments are: (1) **shared service** – applicable if the same vehicle is used by more than one LEA (district, IU, AVTS); (2) **mileage** – applicable if the “approved daily miles” number is less than 20; (3) **day** – applicable if “days of service” are less than the full school term; and (4) **trip** – applicable if a vehicle was used for only one trip per day taking students one way (to or from school, but not both).

Hazardous routes – Subsidy is paid for students residing within those distances if they would have to walk along a route certified as hazardous by PennDOT because of road or traffic conditions.

Market Value Aid Ratio (MVAR) – A value used by PDE as a measure of a school district’s wealth (determined by real estate value) as compared to other Pennsylvania school districts - the lower the value, the wealthier the school district. The theoretical “average” school district has a value of .5000. Don’t confuse Market Value Aid Ratio (MVAR) with Market Value/Personal Income Aid Ratio (MV/PI AR).

Market Value (MV) – Value of taxable real estate as certified by the State Tax Equalization Board. In the MVAR formula, it is applied two years in arrears. For example, the 2006 market value is used in the calculation of the MVAR for payable year 2008-09.
Utilized passenger capacity of vehicle (UPC) – The greatest number of pupils assigned for transportation to or from school on a run. This figure may not exceed the approved passenger capacity of the vehicle.

Utilized passenger capacity miles (UPCM) – The product of the utilized passenger capacity times the approved annual mileage of the vehicle in transportation of pupils to and from school.

VIN – The manufacturer’s serial number of an individual vehicle; the Vehicle Identification Number.

Examples of UPC Calculations

Example 1 – A 72 passenger bus does an elementary run with 54 scheduled pupils, a noon-time kindergarten run of 32 pupils, and a secondary run of 45 pupils. The utilized passenger capacity (UPC) for the day is 54.

Example 2 – A 72 passenger bus does an elementary run with 54 students and schedules 80 students for the secondary run based on the experience that half the pupils drive to school. The utilized passenger capacity (UPC) for the day is 72.

Note: If the seating capacity of a vehicle is permanently reduced to accommodate transportation of certain exceptional pupils, the original capacity of the vehicle may be used in computing maximum allowable costs for reimbursement purposes.

Total Individual Vehicle Allowance

The most complex part of the transportation subsidy calculation is determining a vehicle’s approved reimbursable cost (ARC). Two forms are required because the rules are slightly different for LEA owned and contracted transportation operations. The methodology for calculating approved reimbursement explained here follows the sequence used by these forms. The ARC formula consists of four elements, the sum of which is multiplied by a cost index.

Basic ARC Formula

\[
(1) \text{ Vehicle Allowance} + (2) \text{ Mileage Allowance} + (3) \text{ UPCM Allowance} + (4) \text{ Layover/Congested Miles Allowance}
\]

\[
\text{Multiplied by Cost Index}
\]

In other words, the individual vehicle allowance is: \((1+2+3+4) \times \text{Annual Cost Index}\)

In the presentation that follows, the Individual Vehicle Allowance calculation will be demonstrated for a bus with the following characteristics:
Factor 1	A contracted four-year old bus with a 72 passenger seating capacity.
Factor 2 | The bus was in operation for the full school term, 180 days, and traveled 110 miles per day, 50 miles with student and 60 miles without students.
Factor 3 | The weighted average of pupils on the three runs assigned to this vehicle is: elementary – 50; kindergarten – 35; secondary – 45.
Factor 4 | The bus runs 5 hours per day, or 900 hours per year.

Factor 1 – Vehicle Allowance

The vehicle allowance is the sum of two factors: (1) the basic allowance and (2) the additional allowance.

Basic allowance - For each vehicle approved and used in pupil transportation both to and from school during the full school term under an approved contract, an allowance of $540 is made. If the vehicle has an approved rated pupil capacity of ten or less, the allowance is lowered to $360.

Additional Allowance – The additional allowance for each vehicle is dependent upon two factors: (1) the age of the bus and (2) the pupil seating capacity. There are two sets of factors used in the Additional Vehicle Allowance Calculation: one for contracted vehicles and one for LEA owned vehicles. The calculation favors contracted vehicles and is a factor to consider when evaluating LEA owned versus contracted service.

<table>
<thead>
<tr>
<th>Age of Bus</th>
<th>Rate</th>
<th>X</th>
<th>Pupil Seating Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10 Years</td>
<td>$15</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>11 + Years</td>
<td>$12</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Our calculation example assumes a four-year old LEA owned 72 passenger bus. The Factor 1 allowance would be computed as follows:

\[
(Basic\ Allowance) + (Additional\ Allowance) = Factor\ 1\ Allowance \\
($540) + ($15 \times 72) = Factor\ 1\ Allowance \\
($540) + ($1,080) = Factor\ 1\ Allowance
\]

The Factor 1 Allowance is $1,620

Notes: The calculation assumes two-way transportation for the entire school term. If a vehicle is used daily only for transportation either to school or from school, the basic annual allowance is reduced by 50 percent. If a vehicle is used less than the full school term, the basic annual allowance is prorated in accordance with the fractional part of the term the vehicle was in use.
For example, if the term was 180 days and the bus was only in operation for 120 days, the Factor 1 Allowance would be multiplied by 120/180 or 67%.

Factor 2 – Mileage Allowance

The mileage allowance for reimbursement purposes is computed by multiplying the approved annual mileage to and from school during the school term times $.23. The “approved annual miles” is the approved daily miles times the number of days in operation.

Our example bus traveled for 180 days at 110 miles per day (50 “with” and 60 “without”). The approved daily miles, however, would be 100, because “miles without” cannot exceed “miles with.” (See explanation on page 11). The mileage allowance for the example bus would be:

\[
(\text{Approved Daily Miles} \times \text{Number of Days}) \times \$.23 = \text{Factor 2 Allowance}
\]

\[
(100 \times 180) \times \$.23 = \text{Factor 2 allowance}
\]

\[
18,000 \times \$.23 = \text{Factor 2 Allowance}
\]

The Factor 2 Allowance is $4,140

Note: If the approved mileage a vehicle travels daily in transporting pupils to and from school is less than 20 miles, the vehicle allowance is reduced to the amount determined by multiplying the vehicle allowance times a fraction in which the numerator is the number of approved miles the vehicle travels daily and the denominator is 20. For example, if the approved daily mileage was 10, the Factor 1 allowance would be reduced by multiplying the calculated factor by 10/20, or 50%.

Factor 3 - Utilized Passenger Capacity Miles (UPCM) Allowance

The utilized passenger capacity miles allowance is first determined by multiplying the approved annual miles times the greatest number of pupils assigned to ride at any one time. That value is then divided by 1000 and multiplied by $3.00. Note: For contracted service, the Factor 3 multiplier is $3.50 – not $3.00. The example bus ran an elementary run with 50 assigned pupils, a noontime kindergarten run with 35 assigned pupils, and a secondary run with 45 assigned pupils. The “approved annual miles” was a part of the Factor 2 calculation. The UPCM calculation would be:

\[
[\frac{\text{Approved Annual Miles} \times \text{Greatest # of Assigned Pupils}}{1000}] \times \$3.00 = \text{Factor 3 Allowance}
\]

\[
[\frac{18,000 \times 50}{1000}] \times \$3.00 = \text{Factor 3 Allowance}
\]

\[
(900,000/1,000) \times \$3.00 = \text{Factor 3 Allowance}
\]

\[
900 \times \$3.00
\]

The Factor 3 Allowance is $2,700

Factor 4 – Layover or Congested Hours Allowance
The calculation recognizes the necessity of additional cost when heavily congested traffic conditions or driver layover time (scheduled for reasons of economy) result in excess driver hours.

The allowance is:

\[(\text{Approved hours}) \times (\text{number of days}) \times \$3.00\]

Hours are “approved” for use in this calculation when driver hours exceed the result of dividing the total number of annual miles by 15. The hours used in the calculation represent the difference between the total hours and the result of the described division. This is best explained by example. In the example, there are no approved hours so there is no “Factor 4 allowance.” The vehicle travels 19,800 miles per year in 900 hours. 19,800 divided by 15 is 1,320, which is greater than 900. Our example bus makes fairly good time, averaging better than 20 miles per hour over the year.

The Factor 4 Allowance is $0.00

If the bus was only able to travel, say, 9000 miles during the year because of congested traffic, “Factor 4” would come into play. 9000 divided by 15 is 600. The bus hours of 900 exceed 600 by 300, so the “approved hours” for the purpose of the “Factor 4” calculation would be:

\[300 \times \$3.00 = \$900\]

Note that LEAs requesting an allowance for excess driver hours must submit a written justification and supporting evidence with their annual transportation reports. The examples given assumed that the hours of operation were submitted to and approved by PDE.

The sum of the four factors is then multiplied by the Transportation Cost Index to determine the Individual Vehicle Allowance. The Transportation Cost Index is announced annually by PDE and is a reflection of the rising cost of operations.

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>PDE Cost Index</th>
<th>Operation Year</th>
<th>Payable Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>5.525</td>
<td>15-16</td>
<td>16-17</td>
</tr>
<tr>
<td>2013</td>
<td>5.481</td>
<td>14-15</td>
<td>15-16</td>
</tr>
<tr>
<td>2012</td>
<td>5.400</td>
<td>13-14</td>
<td>14-15</td>
</tr>
<tr>
<td>2011</td>
<td>5.310</td>
<td>12-13</td>
<td>13-14</td>
</tr>
<tr>
<td>2010</td>
<td>5.155</td>
<td>11-12</td>
<td>12-13</td>
</tr>
<tr>
<td>2009</td>
<td>5.079</td>
<td>10-11</td>
<td>11-12</td>
</tr>
<tr>
<td>2008</td>
<td>4.945</td>
<td>09-10</td>
<td>10-11</td>
</tr>
</tbody>
</table>

The Total Individual Vehicle Allowance is the total of the four factors times the applicable Transportation Cost Index.

In the running example used in this section, it would be:
(Factor 1 + Factor 2 + Factor 3 + Factor 4) x Annual Cost Index (2010)
($1,620 + $4,140 + $2,700 + $0) x 5.155
$8,460 x 5.155 = $43,611.30

Approved Reimbursable Cost (ARC)

The aggregate sum of the Total Individual Vehicle Allowances, assuming all calculations and factors have been or will be approved, is the Approved Reimbursable Cost or “ARC.” The ARC is used as a single number in the subsequent steps of the subsidy calculation. The hard part is over, but ARC is only the initial phase of calculation. The basis transportation subsidy formula is:

\[
\text{Approved Reimbursable Cost (ARC)} \times \text{Market Value Aid Ratio (MVAR)} = \text{Subsidy}
\]

The operation of the individual ARC calculations is directed toward determining the amount PDE assumes is the cost to operate the vehicle, regardless of the actual cost. Costs in excess of the ARC are ignored and not subject to reimbursement. Further, if the actual cost of operation is less than the calculated ARC, only the actual cost may be used.

The Subsidy Calculation

In its simplest state, a school district’s transportation subsidy entitlement is determined by multiplying its Approved Reimbursable Cost (ARC) by its Market Value Aid Ratio (MVAR). For the purposes of carrying the running example to the end of the subsidy calculation, assume the sum of the Individual Vehicle Allowances for the LEA fleet is $1,000,000 with an MVAR of .6000. With an ARC of $1,000,000 and an MVAR of .6000, its regular transportation subsidy would be $600,000.

<table>
<thead>
<tr>
<th>Approved Cost</th>
<th>X</th>
<th>MVAR</th>
<th>=</th>
<th>Regular Transportation Subsidy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,000,000</td>
<td>X</td>
<td>.6000</td>
<td></td>
<td>$600,000</td>
</tr>
</tbody>
</table>

Complication #1 – School districts also receive reimbursement for transportation costs of associated vocational technical schools. The ARC of the vocational technical school with respect to a school district is multiplied by the district’s MVAR. The resultant subsidy is then paid to the school district. If the ARC of a vocational technical school with respect to our example school district is $50,000, the school district will receive $30,000 ($50,000 times .6000), bringing its total subsidy to $630,000. The logic in the district receiving the subsidy as opposed to the vocational technical school receiving the subsidy lies in the fact that the district has already paid the vo-tech a fee, which included a payment for transportation in full.
Complication #2 – Servicing intermediate units are also a part of the transportation subsidy mix. School districts receive the benefit of a state financial partnership in the transportation of IU special education students, but the flow of money is different. The rules for approved reimbursable costs apply, as does the application of the MVAR. The state share of the cost of transporting IU students is paid to the intermediate units. The district share of the cost of transporting IU students is paid to the intermediate unit via a deduction from a district’s basic education funding. In our example school district, its IU reports ARC of $200,000 with respect to the cost of transporting district students to and from IU classes.

<table>
<thead>
<tr>
<th></th>
<th>Approved Cost</th>
<th>X</th>
<th>MVAR</th>
<th>=</th>
<th>Regular Transportation Subsidy</th>
</tr>
</thead>
<tbody>
<tr>
<td>District</td>
<td>$1,000,000</td>
<td>X</td>
<td>.6000</td>
<td></td>
<td>$600,000</td>
</tr>
<tr>
<td>Vo-tech</td>
<td>$50,000</td>
<td>X</td>
<td>.6000</td>
<td></td>
<td>$30,000</td>
</tr>
<tr>
<td>IU</td>
<td>$200,000</td>
<td>X</td>
<td>.6000</td>
<td></td>
<td>$120,000</td>
</tr>
</tbody>
</table>

Regular Operating Subsidy | $750,000

Remember, the district does not actually receive the $120,000 intermediate unit subsidy, but it does get credit for it against the intermediate unit transportation bill. For the purposes of a district’s transportation subsidy calculations, this amount is considered “regular operating subsidy.”

Complication #3 – The Public School Code requires that no school district will need to raise more than one-half mill times its market value to pay toward the approved cost of transportation. This umbrella calculation usually provides additional operating subsidy to a school district. In this developing example, assume that the district’s market value (as determined by STEB) is $1,000,000,000. One half mill of market value would be $500,000. After regular transportation subsidies are applied, the district cannot spend more than $500,000 toward the approved cost of transportation. The regular transportation subsidy will be increased to reduce the district’s net cost to that guaranteed level.

<table>
<thead>
<tr>
<th></th>
<th>Approved Cost</th>
<th>X</th>
<th>MVAR</th>
<th>=</th>
<th>Regular Transportation Subsidy</th>
</tr>
</thead>
<tbody>
<tr>
<td>District</td>
<td>$1,000,000</td>
<td>X</td>
<td>.6000</td>
<td></td>
<td>$600,000</td>
</tr>
<tr>
<td>Vo-tech</td>
<td>$50,000</td>
<td>X</td>
<td>.6000</td>
<td></td>
<td>$30,000</td>
</tr>
<tr>
<td>IU</td>
<td>$200,000</td>
<td>X</td>
<td>.6000</td>
<td></td>
<td>$120,000</td>
</tr>
</tbody>
</table>

Regular Operating Subsidy (I) | $750,000

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>District approved cost</td>
<td>$1,000,000</td>
<td></td>
</tr>
<tr>
<td>Vo-tech approved cost</td>
<td>$50,000</td>
<td></td>
</tr>
<tr>
<td>IU approved cost</td>
<td>$200,000</td>
<td></td>
</tr>
<tr>
<td>Total Approved Cost</td>
<td>$1,250,000</td>
<td></td>
</tr>
<tr>
<td>Regular operating subsidy (1)</td>
<td>($750,000)</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Net district cost before adjustment</td>
<td>$500,000</td>
<td></td>
</tr>
<tr>
<td>One-half mill of market</td>
<td>($500,000)</td>
<td></td>
</tr>
<tr>
<td>Additional subsidy</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>Total Regular Subsidy</td>
<td>$750,000</td>
<td></td>
</tr>
</tbody>
</table>

This amount can be proved by understanding the one-half mill guarantee: no district will need to raise more the one-half mill of its market value to pay toward the approved cost of transportation.

<table>
<thead>
<tr>
<th>Proof of Example – “One-half mill guarantee”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net cost after subsidy must be less than or equal to:</td>
</tr>
<tr>
<td>$1,000,000,000 x .0005 = $500,000</td>
</tr>
<tr>
<td>Total approved cost</td>
</tr>
<tr>
<td>Less state subsidy</td>
</tr>
<tr>
<td>Net district cost</td>
</tr>
</tbody>
</table>

Complication #4 – Districts with LEA owned vehicles receive an annual depreciation allowance of $700 per vehicle or 1/10 of the purchase price of the vehicle, whichever is less. This adjustment is in addition to the “regular” transportation subsidy.

Complication #5 – Districts receive an additional $385 for every non-public student transported and every charter school student transported outside of the district.

The Weighted Average Method

During the year, the daily mileage and pupil counts of individual vehicles will vary. The ARC formula, which calls for “approved daily miles” and “greatest number of pupils,” does not allow for these variances. Nevertheless, a single statistic must be determined.

The “Weighted Average Method” is a recognized and accepted way of determining the required single statistic in an operating environment of daily changes.

An alternative method of determining the required single statistic is the “Sample Average Method,” which uses a monthly “snapshot” of one day’s service for a vehicle. This method is the method used by CASD.

Weighted Average Method for Pupils

The UPCM allowance uses “Greatest Number of Pupils Assigned to Ride at Any One Time,” a single statistic. The first step in calculating that statistic is to analyze the runs for each vehicle and determine the highest count for each day.

A literal interpretation of the subsidy law implies massive record keeping – daily logs for each vehicle. If the LEA’s usual recordkeeping or routing software captures detailed daily information by vehicle, then it should be used and a weighted average calculated.
Example of Weighted Average Assigned Pupil Calculation

<table>
<thead>
<tr>
<th>Vehicle ID#</th>
<th># of Days</th>
<th>Times</th>
<th>Greatest Number</th>
<th>Equals</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>003</td>
<td>11</td>
<td>X</td>
<td>35</td>
<td>=</td>
<td>385</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>X</td>
<td>56</td>
<td>=</td>
<td>1,120</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>X</td>
<td>59</td>
<td>=</td>
<td>2,242</td>
</tr>
<tr>
<td></td>
<td>114</td>
<td>X</td>
<td>58</td>
<td>=</td>
<td>6,612</td>
</tr>
<tr>
<td>Total</td>
<td>183</td>
<td></td>
<td></td>
<td></td>
<td>10,359</td>
</tr>
</tbody>
</table>

The weighted average is 10,359/183 or 56.606. Reported to the nearest tenth, it is 56.6

Weighted Average Method for Miles

Mileage calculations under the weighted average method follow the same concept as for pupils but are more difficult to document. Whereas pupil data can usually be extracted from computer or paper records, mileage data comes from contemporaneous odometer readings.

The other complication is the stipulation that when PDE calculates daily miles, “Miles Without Pupils” cannot exceed “Miles With” pupils. This requires odometer readings and logs of both. It is in this area that sampling is most commonly used.

The LEA must maintain records of “Miles With Pupils” and “Miles Without Pupils” data for each vehicle. The examples below show how to calculate weighted averages for mileage changes. Weighted averages should be rounded to the nearest tenth. In all cases, the weighted average will be more than the lowest day’s mileage and less than the highest day’s mileage.

Example of Weighted Average Miles – Miles With

<table>
<thead>
<tr>
<th>Vehicle ID#</th>
<th># of Days</th>
<th>Times</th>
<th>Greatest Number</th>
<th>Equals</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>003</td>
<td>66</td>
<td>X</td>
<td>50.8</td>
<td>=</td>
<td>3,352.8</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>X</td>
<td>50.5</td>
<td>=</td>
<td>1,666.5</td>
</tr>
<tr>
<td></td>
<td>81</td>
<td>X</td>
<td>49.8</td>
<td>=</td>
<td>4,033.9</td>
</tr>
<tr>
<td>Total</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td>9,053.1</td>
</tr>
</tbody>
</table>

The weighted average is 9,053.1/180 or 50.295. Reported to the nearest tenth, it is 50.3

The same calculation methodology would be applied to “miles without,” and the “daily miles” would be the sum of the two, **except that** “miles without” could not exceed “miles with.” In this example, “miles without” could not exceed 50.3. If it did, it would be limited to 50.3 and the total would be 100.6.

Sample Average Method

Many school districts choose to use the “Sample Average Method” to compute “miles with,” “miles without,” and the “daily miles.” The “Sample Average Method” uses a monthly “snapshot” of one day’s service for a vehicle. The “Sample Average Method” form and
supporting documentation should be retained for review of the auditor. The steps for using this method include:

1. Record each vehicle odometer reading on or about July 1 prior to the beginning of the school year and on or about July 1 at the end of the school year, and subtract the beginning of year odometer reading from the end of the year odometer reading to determine the annual odometer mileage.

2. Once during each month, from October through May, for to and from school transportation, measure and document the number of miles each vehicle traveled with students, the number of miles each vehicle traveled without students, and the greatest number of students assigned to ride each vehicle at any one time during the day.

3. Calculate the average of the eight measurements (to the nearest tenth) for each of the three variables – these are called the sample averages.

4. The annual odometer mileage and the sample averages determined should be used to complete form PDE-1049, end-of-year pupil transportation report in the eTran system.

AUDIT RECORD KEEPING

Because of the pervasive complexity of the transportation subsidy calculation and the extensive record keeping required, both PDE and the Auditor General report significant reporting problems, and offer the following suggestions.

1. **CHECK THE MATH** - Many errors are simply clerical, addition, or transfer errors.

2. **NON-PUBLIC PUPIL COUNT** – Record all non-public pupils transported, regardless of who actually provides transportation: the home district, another district contracted by the home district, a contractor, or an LEA paid parent.

3. **INTERMEDIATE UNIT TRANSPORTATION**. Check to ensure IU charges are only for LEA resident pupils.

4. **ACTIVITY (LATE) RUNS**. The “greatest number” of students for an activity run is taken from the primary run for the vehicle. Using a bus with a high regular run pupil assignment has the effect of increasing ARC and subsidy.

5. **VEHICLE DAYS**. Report the actual number of days that a vehicle provides service. PDE will subsidize for days of operation in excess of 180.

6. **HOMELESS STUDENTS**. If you are providing transportation for homeless students, you may claim the costs and the students as if they were current residents.

7. **MEASURE THE 1/10ths**. Some new vehicles have odometers that do not measure to tenths, rolling over only when the next whole mile is traveled. This could mean the loss of up to 9/10 mile per run per day. Similarly, mapping programs may be calculating to points along a main road. This could create a loss in subsidy, for example, if a school building was located a quarter
mile back from the road. In this example, there would be a loss of one-half mile per run for each bus traveling to the school.

8. **VEHICLE CAPACITY.** There cannot be more pupils assigned to a vehicle for the purposes of the subsidy calculation than there is capacity on the vehicle. There may be more on the roster, but the excess cannot be reported for the purpose of generating subsidy.

9. **EXTRA RUNS.** Runs during the day for the purpose of swimming lessons, enrichment classes, and religious instruction, etc., are **not** covered under the subsidy, which is only for transportation to and from the school in which the child is enrolled. An exception to this rule is made for required IEP services. Vo-tech runs and mid-day kindergarten runs **ARE** claimable because they are to and from school. Late runs to take students home from after school activities are also claimable as long as it is the student’s first trip home.

10. **CHILD CARE.** The eligibility for transportation subsidy is determined by the location of the child’s residence, not the location of the childcare provider. If, for example, a child lives within 1.5 miles of school on a non-hazardous walking route but receives transportation services from a childcare provider living five miles away, the child is “non-reimbursable” for the purposes of the transportation subsidy.

COMMON REPORTING ERRORS

<table>
<thead>
<tr>
<th>On Form PDE-2089</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Counting pupils as “hazardous” who reside more than one and one-half miles from their elementary school or two miles from their secondary school.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>On PDE-1049</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Not submitting letters requesting excess hours allowance for layover or congested routes</td>
</tr>
<tr>
<td>☐ LEA Owned: Not entering total miles, or entering a figure that is not derived from a school-year odometer reading comparison (you must subtract July 1 first year reading from June 30 second year reading).</td>
</tr>
<tr>
<td>☐ LEA Owned: Not listing spare vehicles, or not listing them correctly.</td>
</tr>
</tbody>
</table>

Record Keeping and Preparing for the Auditor

- **School calendars** for all public and private schools to which transportation service is provided to verify the “number of days.”

- Monthly **mileage forms** displaying data that is recorded by the bus driver indicating miles traveled with students and miles traveled without students. One form should be maintained for each vehicle. A copy of a mileage form template is found in Appendix B. **Note:** The Bureau of School Audits will be asking for odometer readings even if mapping program data is used as documentation. The odometer reading must reconcile with the information the program is generating.
Monthly student rosters for each vehicle in order to verify the maximum number of students transported daily. Again, this is important for all public and private schools. The roster should include the names of each student transported. If a “sampling method” is used, it is important to record the mileage and student roster information on the same day.

Odometer readings for June 30 of the current year and July 1 of the preceding year for each vehicle used for both private and public school transportation. This information should be maintained on one form. The form should include the make and vehicle identification number (VIN) and the rated capacity of the vehicle.

Hazardous route records. These records should include copies of letters from PennDOT citing the hazardous walking routes within 2.0 miles for secondary and 1.5 miles for elementary from each school as hazardous. In addition, routes showing the number and names of students living within each hazardous route should be maintained.

Please find example of Hazardous route records in Appendix A. The Study Team recommends following this example for hazardous route record keeping.

Fuel records for the school year, including the number of gallons used and the total cost if LEA-owned fleet or LEA is providing fuel for contractors.

A copy of each contract with contracted service providers, including those with individual drivers. Copies of insurance certificates must also be maintained.

Evacuation drills verification forms, PDE 4101 (Certification of Fulfillment of Fire Drill and School Bus Emergency Evacuation Drill Requirements).

All filed transportation forms and PDE end of year subsidy summaries.

Vehicle data: Serial number, year of manufacture, capacity. This information must be tied to mileage and student roster information.

All supporting calculations, including weighting worksheets and notes about special arrangements.

Run information, including routes, stop locations, times, etc.

Contractor names and record of payments made.

Copies of Board Minutes with driver and route approvals. Note: It is the Auditor General’s view that drivers must be specifically approved by the LEA governing board, even if the drivers are contracted.

Driver Files: Driver’s License; Clearances; Physical Exam; Training Information, including Child Abuse Mandated Reporter Training; Pass the Trash for all new drivers.

The completed field audit is returned to the Department of the Auditor General for review and processing. From there it goes PDE’s Division of Subsidy Data and Administration. If needed, recovery adjustments are made as deductions from a district’s Basic Education Funding payment. Payments are made from the appropriate transportation appropriation.
C. CONTRACT REVIEW

The Study Team reviewed the contracts with existing contractors, which were effective July 1, 2015 for school years 2015-2016, 2016-2017, and 2017-2018.

The Study Team offers the following recommendations for future contracts:

1. Driver training: The contract should clearly specify all required driver training to be completed prior to the start of each school year, including, but not limited to the following: (a) First Aid/Epipen, (b) Emergency/Accident procedures, (c) Customer service training including conflict management and bullying, (d) Diversity training, (e) Management of student conduct and report procedures, (f) Specialized training for any special needs requirement, (g) Child abuse mandated reporter training, etc. The contract should also clearly specify required training frequencies during the school year. The contractors should provide a copy of all training records for all drivers to the School District.

2. Average age of vehicle: In order to maximize state reimbursement and to ensure safety and reliability, the Study Team recommends the following contract language related to average age of vehicles:
The District expects and requires that the contractor dedicate a fleet of vehicles for use in its transportation system that is mechanically reliable, well maintained, and keeps current with improvements and innovations in buses safety. In addition the District expects that its fleet project a good exterior and interior appearance.

To this end minimum standards of vehicle age are established for each year of the contract. Age is determined as of the beginning of each contract year as defined by the Pennsylvania Department of Transportation.

A. No vehicle, including spares, will be in excess of ten years old for any year of the contract.

B. For each year of the contract the average age of the fleet will be five years old or less.

3. Fuel: The Study Team recommends the contract does not include the cost of fuel. There are a variety of cost effective “piggy back” fuel programs, including a Joint Purchase option offered through the Lincoln Intermediate Unit that are available for the School District to purchase fuel.

4. Two-way communication: The Study Team recommends the contractors should be responsible to equip all vehicles with two-way communication to a base station. All costs associated with the operation of the system, including its purchase, maintenance, and licensing will be the operational and financial responsibility of the contractor.

5. Equipment: The Study Team recommends the contractors furnish the following equipment on each bus:

- The contractor shall provide a digital video camera system of high quality, with the ability for audio and video, in each vehicle. The contractor will install one front camera, one rear camera, and one camera over the front door in full-sized buses; one front camera and one camera over the front door in mini-buses; and one front camera, a camera over the front door, and a camera on the wheelchair lift in wheelchair mini-buses.

- The contractor shall provide a web-based global positioning system (GPS) to track the real-time movement of all vehicles in the fleet, including spares. The Coordinator of Student Transportation shall have access to this system.

- The contractor shall establish a cost for a speaker system in each vehicle in the fleet, including spares, to allow for communication between the driver and passengers.

- The contractor shall establish a cost for the installation of strobe lights on all vehicles in the fleet, including spares, to improve visibility and safety.
6. Uniforms: The Study Team recommends that the contract language includes the provision that all drivers are to be outfitted in uniforms. The contractor should provide the District with a plan (dress code) for all seasons.

7. Equity payment: The Study Team recommends removing “equity payment” from future contracts. The cost of equity payments to contractors was approximately $200,000 in 2014-2015.

8. Request for proposals (RFP): The Study Team recommends doing a request for proposal process one year prior to the end of the existing contract.

While it is probably not realistic to expect contractors to be paid only the state subsidy rate, it is recommended to perform a competitive RFP process for contractor services every few years.

Also, during the RFP process the Study Team recommends that CASD structure the proposal to see if the school district would benefit from privatization of the entire transportation system operation. It is extremely likely that a single private vendor would purchase the depot and vehicles owned by the school district, which would provide a one-time cash infusion. It should be noted, however, that the Study Team recognized the cost effective nature of the current system of having a combination of district-owned vehicles and multiple contractors.

While there is no data to suggest a reduction of contractors would reduce expenses, the Study Team recognizes the amount of resources it takes for the District’s transportation staff to manage a large number of contracts. CASD should also consider the following in the RFP process:

Package bids - The design of bid packages which would allow contractors to bid on a package of routes. The packaging of bids enables bulk bidding and may lead to volume discounts from school bus contractors wishing to bid on more than one piece of the package.

9. Driver Clearances: In addition to the clearances stated in the contract, all new drivers should provide “Pass the Trash” clearances.

10. Insurance: The Study Team reviewed the insurance requirements for contracted vendors and believes the amounts are consistent with best practices. However, the Study Team recommends reviewing the coverage amounts with the District’s solicitor.

11. Trips: The Study Team reviewed the contracted amount for trips and believes the amounts are consistent with best practices. During an RFP process the following language can be used:

Sample RFP for Trips:
The contractor is required to provide transportation for District teams participating in Interscholastic athletic events, including band and cheerleaders. For other field trips the District, at its option may contract with other vendors. The following price structure will be used for each trip. Cost per bus per trip to be determined using the following formula: Mileage fee + layover time (rounded to nearest ¼ hour). This sample price structure will be used for all trips that are District contracted. Remember that the District will provide fuel for District contracted trips. For
trips contracted by school related organizations the contractor is responsible for the purchase of fuel.

Cost per hour per driver for layover time.

2014/2015

$23.97 (Per Hour)

Cost per mile per bus including driver.

2014/2015

$2.40 (Per Mile)

The following charges shall apply to all trips that are cancelled on site.

2014/2015

$68.82 (Per Trip/Per Bus)

The following charges are a minimum trip charge.

2014/2015

$107.81 (Per Trip/ Per Bus)
D: SPECIAL NEEDS TRANSPORTATION

This section of the report is provided by the Study Team for informational purposes.

Special education services for special needs children extends beyond the classroom and school to providing special transportation services. Providing these services takes a great deal of time and resources for educational systems. It is not uncommon for the transportation director to spend a significant amount of time planning a transportation system that meets the requirements of special needs students.

The regulations supporting special needs transportation in Pennsylvania are clear: children who receive special education services are entitled to transportation to and from school and school related activities.

Special Needs Transportation Checklist

- A child who is receiving special education services must get transportation to, from, and around the school if needed for the student to benefit from his/her education program.

- Children are entitled to the transportation they need to participate in class field trips.

- If the school district provides transportation to and from sports or other afterschool activities for children who are not disabled, it must provide appropriate transportation for children with disabilities.

- Transportation to school and school related trips must be free. If there is a charge for transportation to an optional field trip or event, a child with a disability cannot be charged more than other children.
The transportation must be appropriate for the child in view of the child’s age and disability. For example, some children can just ride the school bus with other classmates or, if given a school token, take public transit. For a child who uses a wheelchair, a bus or van with a lift may be required.

In some cases, an aide may be needed on the bus or vehicle to help meet the needs of a child.

Special arrangements may be necessary due to medical concerns.

The length of the bus ride may be dictated by the child’s IEP, usually due to health problems or behavior.

The school day cannot be cut short because of the transportation schedule of a special needs child.

If a parent or guardian is not satisfied with the transportation services offered by the school district, they can ask for mediation or a special education hearing.

Parents and guardians are able to file complaints regarding a school district not carrying out transportation services as listed in the child’s IEP through the Division of Compliance, Monitoring and Planning, Bureau of Special Education, Pennsylvania Department of Education, 333 Market Street, Harrisburg, PA 17126. The Division of Compliance has 60 calendar days to investigate and to report on the complaint.

A child with a disability who is placed by the school district or a public charter school in a private school has the same rights as a child who is receiving special services in the district – including free transportation that is appropriate to his/her needs.

If a child is placed by the school district in a residential school, free transportation must be provided on breaks and school holidays.

If parents place their child in a private or parochial school at their own expense (regardless of whether the child has a disability), the child may still be entitled to free transportation from the school district. Transportation to and from private schools and on field trips must be provided to the child if all of the following are true: (a) the district provides transportation to public school children of the same age, (b) the private school is within 10 miles of the school district boundaries, and (c) the private school is non-profit.

Transporting Students with Disabilities

Determining the level of support for students with disabilities, it is important to consider the following factors:

A. Length of Ride: Health factors and the impact of the student’s disability should be considered as they influence the safety of the student during transit. Young students may show limited tolerance for extended bus rides, and the behavior of students with
emotional disturbance or behavioral disorders tends to deteriorate as the length of the bus ride increases. There may also be unique issues for students requiring medication.

B. **Level of Assistance Needed:** The level of assistance required by a student is influenced by the student’s age, size, sensory skills (e.g., vision, hearing), communication skills, level of intelligence, and social/emotional factors.

C. **Seating:** Seating decisions are generally based on the student’s level of functioning. Students with limited trunk strength may require a seat belt or vest to provide additional support while on a moving bus. Students with visual impairments are likely to require an assigned seat they can independently locate. Students with significant intellectual limitations may require assistance to find their seats. Students with seizure disorders may need to be seated where they can be monitored and where lighting can be controlled.

D. **Special Adaptive and Assistive Equipment:** Seat belts, vests, harnesses, and wheelchair securement devices must be properly used. It is important to consult with a knowledgeable professional such as a physical therapist, school therapist or mobility specialist to ensure any such devices are used properly. If a student brings an assistive device on the bus, make sure it is properly secured for transport.

E. **Evacuation:** When preparing for the possible evacuation of students with disabilities, it is essential to have a written plan, which pays close attention to the individual needs of students. All students should participate in evacuation drills unless they have been exempted by authorized medical personnel. School bus operators and other personnel should plan to evacuate all students using all available exits with and without the use of the power lift (if applicable).

Other Considerations

- The bus stop for many students with disabilities, especially those with physical disabilities using wheelchairs, is often located on the sidewalk or driveway in front of the students’ homes.

- The bus stop should have level parking, smooth approaches from the house, and adequate space for placing ramps and loading wheelchairs.

- Bus stops where the bus is pulled over to the left side of the street, facing oncoming traffic, are prohibited.

- Just as each student requires individual attention, each stop requires its own approach. Adapt pickup and drop off procedures for the particular needs of the student and the location.

- Stops for students with disabilities require more time and care than those for typical students. Try to find a place where traffic will not be unduly held up, if the school bus eight-way light system is activated.
✓ If the bus is completely off of the roadway, drivers do not need to use the school bus eight-way light system. However, hazard warning lights must be used.

✓ Sometimes students need the driver’s help boarding or carrying their belongings. Assisting in the loading of a student with a disability is a time when bus drivers are permitted to leave the wheel of the vehicle. If the driver leaves the wheel, they should put the transmission in park or neutral and turn off the ignition. They should also be sure to remove the keys and set the emergency brake. On some vehicles with special equipment such as a lift, drivers must leave the engine on during loading and unloading. In these situations, drivers should make sure the transmission is in park or neutral, and the emergency brake is engaged before leaving the vehicle for loading or unloading.

✓ In order to board or exit the bus, some students may need the help of several people (e.g., parents, aides) in addition to the driver. Be sure all persons involved know their role in this procedure, ideally before the beginning of the school year.

✓ Most vehicles used to transport students with disabilities have seat belts or other forms of child safety restraint systems (CSRS) to help students secure. Before the engine is turned again, drivers should make sure all seat belts are fastened, all doors and windows are locked, all security devices are engaged, and all belongings are securely placed.

✓ Plan considerably more time to load students with disabilities, especially those with physical impairments. Follow your school district’s policy on wait time and expected boarding time. Parents should be instructed to have students at the bus stop five minutes before the scheduled time of arrival.

✓ If a student requires an aide, you must never leave him or her unattended.

✓ If you are transporting a student with a disability in a large bus with general education students, don’t automatically assign the student to the front seat. Typically, front seats are saved for “problem” students, and not many students want to sit near the driver. Students with disabilities are like most of your student passengers in that they prefer to sit with their friends.

✓ When assigning a seat to a student with a disability, consider such factors as mobility and independence of the student, needs of the student, ease of emergency evacuation, availability of dependable assistance, and vulnerability of the student during interactions with other students.

✓ While on the road, watch for any behaviors that might cause a dangerous situation. If aides are available, part of their responsibilities should be to make sure all students remain safely seated and secure. With or without aides, drivers should make periodic checks. Knowing each student’s specific behavior patterns enables drivers to avoid potentially dangerous situations during transport. Before transporting any student with special needs, it is critical to understand the disability and potential behavior each student may exhibit.
Never leave students unless a parent or other responsible person is there. Since policies differ from area to area, local school district officials must establish specific procedures to follow when no responsible person is present where the student is to be unloaded.

Recommendation: The PASBO Study Team recommends an annual review process for all students assigned to special needs transportation to make certain the students’ continue to need special transportation services.

Cost Factors

The specific needs of the student must be the primary consideration when an IEP team is determining transportation services. However, the PASBO Study Team recognizes the efficiency of the transportation system for special education is partially dependent on the location of the program sites and the placements of students. To meet the needs of students, a large number of students are transported out of their “home zones” for required services. The **Study Team recommends CASD conducts a demographic and geographic review** that analyzes the present locations of programs, number of students served, and present “home zone” of the student served. There may be an opportunity to reduce transportation costs by changing location of programs.

In addition, when possible special needs student may be able ride to and from school using their “home zone” bus and then shuttle to their assigned buildings. This allow the students to ride the bus with their neighbors and could reduce the number of vehicles needed.

Finally, it is often beneficial to have transportation staff present at IEP team meetings. The combination of planning and providing information to IEP teams maximizes appropriate placements and efficient cost-effective transportation systems.

TRANSPORTATION OF HOMELESS STUDENTS

When a parent(s)/guardian and child were permanently housed in the school district and are displaced from their home to either move to a shelter in another school district or move to live with a family (doubled-up) in another school district, the two districts must agree upon a method of transportation and the apportion of costs. If the two districts cannot agree on how to allocate the costs, the costs must be shared between the two school districts.

When responsibility and costs are shared equally, the data should be reported in the eTran system as follows: (a) each school district should report the transportation information for the student and show it a shared service, (b) the transporting school district should reduce the ‘amount paid contractor’ by the amount invoiced to the other school district, (c) the transporting school district should provide the other school district with the contractor and vehicle information as well as miles with/miles without as if the student were the only one on the bus, and (d) the other school district should report only the amount that were billed for this student in the ‘amount paid contractor’ box.
E. OPPORTUNITIES FOR IMPROVEMENT

DOUBLE RUNS

There may be an opportunity of savings by adding double runs for certain buses servicing highly populated areas.

The general rule for buses that have more than one run is as follows:

- The first run in the a.m. will pick up students who live the greatest distance from school.
- The second run in the a.m. will pick up students who live closest to the school.
- The first run in the p.m. will deliver students who live closest to school.
- The second run in the p.m. will deliver students who live the greatest distance from school.

The objective is to create double-runs such that student waiting time at school is kept to a minimum.

Recommendation: The Study Team recommends the transportation office study the possibility of adding double runs to the transportation system as a cost effective measure.

PURCHASING/INVENTORY CONTROL

Recommendation: The Study Team recommends that the School District utilize a fleet maintenance software program. The software should be used by the transportation department to schedule preventative maintenance, prioritize repairs, and maintain inventories. The preventive program should also be the primary driver of the budgeting, purchasing, and inventory program.
Many systems automatically updates preventive maintenance dates upon completion of a work order, eliminating manual tracking. The program also tracks component warranties and alerts users when they are due to expire, ensuring that replacements and fixes are made before they expire. In addition, inventory levels are reduced automatically when parts are assigned to a work order. Users can create work order templates for the services performed regularly to eliminate duplicate entries. There should be very few purchases that are not planned and outside of District’s existing purchase order process.

STAFFING LEVELS

The Study Team reviewed the staffing levels in the Transportation Department. The staffing levels seem to be in line with best practices. There may be an opportunity to reduce one mechanic position, however it was noted that the mechanics also perform work on District-owned maintenance vehicles. The Study Team recommends the need for both mechanic positions be evaluated during the normal staff evaluation process. In addition, the Study Team was impressed with the overall knowledge of all transportation staff related to best practices and state reporting.